Jika H = {x | x positif dan x2 – 5x + 6 = 0}, maka banyaknya himpunan bagian dari H adalah ….
(A) 1
(B) 2
(C) 4
(D) 6
(E) 8

Jawab: (C)

Banyaknya anggota himpunan bagian dari suatu himpunan dengan banyak n anggota sama dengan 2n. Sehingga perlu menentukan banyak anggota himpunan H terlebih dahulu sebelum menentukan himpunan bagian dari himpunan H.

Diketahui H = {x | x positif dan x2 – 5x + 6 = 0}, artinya anggota himpunan H adalah semua nilai x yang bernilai positif (x > 0) dan memenuhi persamaan x2 – 5x + 6 = 0.

Pertama, teNtukam nilai x yang memenuhi persamaan x2 – 5x + 6 = 0. Caranya dengan melakukan pemfaktoran persamaan kuadrat tersebut.

Pemfaktoran x2 – 5x + 6 = 0:

(x – 2)(x – 3) = 0

x1 = 2 atau x2 = 3

Diperoleh dua nilai x yaitu x1 = 2 atau x2 = 3. Kedua nilai x bernilai positif sehingga kedua nilai x merupakan anggota himpunan H = {2, 3}. Banyak anggota himpunan H adalah n(H) = 2.

Jadi, banyaknya himpunan bagian dari H adalah 22 = 4.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.