Cara Menentukan Persamaan Grafik Fungsi Kuadrat dari Gambar

By | April 20, 2020

Ada 3 cara mengetahui persamaan grafik fungsi kuadrat dari gambar. Cara ini disesuaikan dengan informasi yang diberikan pada gambar. Cara pertama untuk gambar grafik fungsi kuadrat yang diketahui dua titik potong pada sumbu x. Kedua, adalah cara menentukan persamaan grafik fungsi kuadrat dari gambar jika diketahui titik puncak dan titik potong dengan sumbu y. Cara ketiga yaitu untuk mengetahui persamaan grafik fungsi kuadrat dari gambar jika diketahui tiga titik pada grafik fungsi. Pembahasan ketiga cara tersebut akan diulas pada halaman ini.

#1: Diketahui Dua Titik Potong Grafik dengan Sumbu X

Titik potong dengan sumbu x terjadi ketika nilai y = 0. Sebuah grafik fungsi kuadrat paling banyak dapat memotong sumbu x sebanyak dua kali. Terdapat grafik fungsi kuadrat yang tidak memotong sumbu x. Ada juga grafik fungsi kuadrat yang hanya memotong sumbu x di satu titik. Perhatikan gambar grafik fungsi kuadrat yang melalui dua buah titik pada sumbu x. Serta sebuah titik sembarang pada grafik berikut.

Cara Menghitung Persamaan Grafik Fungsi Kuadrat dari Gambar

Cara mengetahui persamaan grafik fungsi kuadrat yang melalui sumbu x pada dua titik bisa dilakukan cara ini. Misalkan diketahui sebuah grafik fungsi kuadrat yang memotong sumbu x di titik (x1, 0) dan (x2, 0). Persamaan yang mewakili persamaan kuadrat tersebut adalah y = (x – x1)(x – x2) = 0.

Bentuk umum persamaan kuadrat di atas berlaku saat grafik memotong sumbu x di A( x1, 0 ), B( x2, 0 ) dan C (x3, y3). Untuk menambah pemahaman sobat idschool, perhatikan contoh soal dan pembahasannya berikut.

Contoh 1: Menentukan Persamaan Kuadrat Jika Diketahui Gambar

Perhatikan gambar di bawah!

Soal Persamaan Grafik Fungsi Kuadrat dari Gambar

Persamaan grafik fungsi kuadrat pada gambar di atas adalah ….
A.   y = x² – ½x – 8
B.   y = x² – ½x – 4
C.   y = ½x² – x – 4
D.   y = ½x² – x – 8
E.   y = ½x² – 2x – 8

Pembahasan:

Diketahui dua titik yang memotong sumbu x adalah  (–2, 0) dan (4, 0). Diketahui juga sebuah titik pada grafik fungsi kuadrat (0, –4).

Mencari nilai A:
y = a (x – x1)(x – x2)
–4 = a(0 – (–2))(0 – 4)
–4 = a × 2 × (–4)
–4 = a(–8)
a = –4/–8
a = ½

Mencari persamaan kuadrat:
y = a(x – x1)(x – x2)
y = ½ (x + 2)(x – 4)
y = ½ (x² – 2x – 8)
y = ½x² – x – 4

Jadi, persamaan grafik fungsi kuadrat pada gambar di atas adalah y = ½x² – x – 4.

Jawaban: C

Baca Juga: Langkah – Langkah Menggambar Grafik Fungsi Kuadrat

#2: Diketahui Titik Puncak dan Titik Potong dengan sumbu – y

Berikutnya adalah kondisi soal untuk gambar grafik fungsi kuadrat dengan titik puncak dan satu titik memotong sumbu y. Bentuk umum persamaan kuadrat yang digunakan untuk menyelesaikan jenis soal ini adalah y = a(x – xp) + yp. Perhatikan gambar grafik fungsi kuadrat dengan diketahui titik puncak (xp, yp) dan satu titik pada grafik fungsi kuadrat berikut.

Bentuk Umum Persamaan Fungsi Kuadrat dari Gambar

Simak contoh soal dan pembahasan yang sesuai dengan kondisi tersebut pada soal berikut.

Contoh 2: Cara Menentukan Persamaan Kuadrat Jika Diketahui Gambar

Perhatikan gambar di bawah!

Contoh Soal Persamaan Grafik Fungsi Kuadrat dari Gambar

Pembahasan:

Diketahui dari gambar grafik fungsi pada soal:

  • koordinat titik puncak (1, –1)
  • grafik melalui titik (0, –3)

Mencari nilai a:
y = a(x – xp)2 + yp
–3 = a(0 – 1)2 + (–1)
–3 = a × 1 – 1
–3 = a – 1
a = –3 + 1 = –2

Mencari persamaan kuadrat:
y = –2(x – 1)2 + (–1)
y = –2(x – 1)2 –1
y = –2(x2 – 2x + 1) –1
y = –2x2 + 4x – 2 –1
y = –2x2 + 4x – 3

Jawaban: A

Baca Juga: Pertidaksamaan Kuadrat dan Himpunan Penyelesaiannya

#3: Diketahui Tiga Titik Sembarang pada Grafik Fungsi Kuadrat

Cara yang ketiga adalah untuk mengetahui persamaan grafik fungsi kuadrat dengan diketahui tiga titik koordinat. Tiga titik koordinat tersebut terletak pada grafik fungsi kuadrat. Kondisi soal seperti ini bisa diselesaikan dengan menggunakan bentuk umum persamaan kuadrat y = ax2 + bx + c.

Cara Menentukan Persamaan Grafik Fungsi Kuadrat dari Gambar

Substitusikan ketiga titik koordinat pada grafik fungsi kuadrat sehingga diperoleh tiga persamaan linear. Tiga buah persamaan linear tersebut terdiri dari tiga buah variabel a, b, dan c. Selanjutnya, gunakan metode elimiasi dan substitusi untuk mendapatkan nilia a, b, dan c. Pada akhirnya akan diperoleh persamaan kuadrat yang sesuai.

Untuk menambah pemahaman sobat idschool, simak contoh soal berikut.

Contoh 3: Soal Menentukan Persamaan Kuadrat Jika Diketahui Gambar

Perhatikan gambar berikut!

Contoh Soal Menentukan Persamaan Grafik Fungsi Kuadrat dari Gambar

Persamaan dari grafik fungsi di atas adalah ….

    \[ A. \; \; \; f(x) = \frac{4}{5}x^{2} - x - \frac{4}{5} \]

    \[ B. \; \; \; f(x) = 3x^{2} - \frac{4}{5}x - \frac{4}{5} \]

    \[ C. \; \; \; f(x) = \frac{4}{5}x^{2} - 3x + \frac{4}{5} \]

    \[ D. \; \; \; f(x) = \frac{4}{5}x^{2} + 3x - \frac{4}{5} \]

    \[ E. \; \; \; f(x) = \frac{4}{5}x^{2} - 3x - \frac{4}{5} \]

Pembahasan:

Grafik fungsi di atas melalui tiga buah titik yaitu (–1, 3), (1, –3), dan (4, 0). Bentuk umum persamaan kuadrat yang digunakan adalah: y = ax2 + bx + c.

Substitusi tiga titik pada bentuk umum persamaan kuadrat:

  • Persamaan (1): untuk titik (–1, 3)
    f(x) = ax2 + bx + c
    3 = a(–1)2 + b(–1) + c
    3 = a – b + c → a – b + c = 3
  • Persamaan 2: untuk titik (1, –3)
    f(x) = ax2 + bx + c
    –3 = a(1)2 + b(1) + c
    –3 = a + b + c → a + b + c = –3
  • Persamaan 3: untuk titik (4, 0)
    f(x) = ax2 + bx + c
    0 = a(4)2 + b(4) + c
    0 = 16a – 4b + c → 16a – 4b + c = 0

Berikutnya adalah mencari nilai a, b, dan c dengan metode eliminasi dan subsitusi. Eliminasi a dan b dari persamaan (1) dan (2) untuk mendapatkan nilai b:

Diperoleh nilai b = –3, selanjutnya adalah mencari nilai a dan c. Eliminasi c dari persamaan (1) dan (3):

Subtitusi nilai b = –3 pada persamaan 15a + 5b = – 3 untuk mendapatkan nilai a.

15a + 5(–3) = –3
15a – 15 = –3
15a = –3 + 15
15a = 12
a = 12/15 = 4/5

Substitusikan nilai a = 4/5 dan b = – 3 ke persamaan (1) untuk mendapatkan nilai c:

    \[ a - b + c = 3 \]

    \[ \frac{4}{5} - (-3) + c = 3 \]

    \[ \frac{4}{5} + 3 + c = 3 \]

    \[ c = 3 - 3 - \frac{4}{5} \]

    \[ c = - \frac{4}{5} \]

Langkah terakhir, substitusi nilai a, b, dan c yang diperoleh pada bentuk umum persamaan  kuadrat f(x) = ax2 + bx + c. Jadi persamaan grafik di atas adalah

    \[ f(x) = \frac{4}{5}x^{2} + (-3)x + \left( - \frac{4}{5} \right) \]

    \[ f(x) = \frac{4}{5}x^{2} - 3x - \frac{4}{5} \]

Jawaban A

Demikianlah tadi ulasan materi mengenai cara menentukan persamaan grafik fungsi kuadrat dari gambar. Meliputi tiga cara yang berbeda untuk tiga kondisi soal yang berbeda. Terimakasih sudah mengunjungi idschool(dot)net, semoga bermanfaat.

Baca Juga: 3 Cara Menyelesaikan Persamaan Kuadrat

2 thoughts on “Cara Menentukan Persamaan Grafik Fungsi Kuadrat dari Gambar

    1. admin Post author

      Halo Ibnu, benar ada sedikit koreksi pada penggunaan tanda +/-, terimakasih komentar dan evaluasinya, salam sukses selalu…

      Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.