Rumus Volume Kubus dan Luas Permukaannya +Contoh Soal

Rumus volume kubus adalah V kubus = s3 = s × s × s. Dan rumus luas permukaan kubus adalah L kubus = 6 × s2 = 6 × s × s. Nilai s pada rumus volume dan luas permukaan kubus adalah panjang rusuk kubus.

Sebagai contoh, diketahui sebuah kubus mempunyai panjang rusuk 10 satuan. Volume kubus tersebut adalah 1.000 satuan volume dan luas permukaannya adalah 600 satuan volume. Satuan volume yang digunakan adalah meter kubik (m3), sentimeter kubik (cm3), liter (dm3), cc, atau satuan volume lainnya.

Detail cara menghitung volume kubus dan luas permukaannya ada di bawah.

Daftar isi:

Bagian-Bagian Kubus

Kubus adalah salah satu bangun tiga dimensi yang memiliki 3 pasang persegi. Sehingga, ada enam persegi dalam sebuah kubus. Setiap persegi pada kubus akan sejajar atau berpotongan tegak lurus.

Kubus memiliki 12 rusuk, 8 titik sudut, 12 diagonal sisi, 4 diagonal ruang, dan 4 bidang diagonal. Setiap rusuk memiliki panjang yang sama. Kubus yang memiliki panjang rusuk s akan memiliki panjang diagonal sisi s√2 dan panjang diagonal ruang s√3.

Bagian-bagian penyusun kubus terdapat pada gambar berikut.

Bagian-Bagian Kubus
sumber gambar: dokumen pribadi

Bagian-bagian penyusun kubus:

Nama
Bagian
BanyaknyaKeterangan
Titik sudut8A, B, C, D, E, F, G, H
Bidang sisi12ABCD, EFGH, ADHE, BCGF, ABFE, DCGH
Rusuk12AB, BC, CD, DA, EF, FG, GH, HE, AE, BF, CG, DH
Diagonal sisi12AF, BE, BG, CF, CH, DG, AH, DE, AC, BD, EG, HF
Diagonal ruang12AG, CE, HB, DF
Bidang diagonal6ACGE, BDHF, EFCD, ABGH, BCHE, ADGF


Baca Juga: Rumus Volume dan Luas Permukaan Limas

Rumus Kubus

Rumus volume dan luas permukaannya beserta contoh cara menghitungnya ada pada keterangan di bawah.

1) Volume Kubus

Secara umum, volume bangun ruang sama denga luas alas × tinggi. Luas alas berbebtnuk persegi, sehingga luas alas sama dengan panjang rusuk × rusuk. Tinggi kubus sama dengan panjang rusuknya.

Sehingga, sebuah kubus yang memiliki panjang rusuk s memiliki volume V = s × s × s = s3.

Rumus Volume Kubus
Sumber gambar: dokumen pribadi

Cara menghitung volume kubus

Soal:
Sebuah kubus mempunyai panjang rusuk 3 cm. Tentukan volumenya!

Jawab: 
Dari soal diberikan informasi panjang sisi kubus adalah s = 3 cm.

Menghitung volume:

V = s3 = s × s × s

V = 3 × 3 × 3 =  27 cm3

Jadi volume kubus tersebut adalah 27 cm3.

2) Luas permukaan kubus

Luas permukaan suatu bangun ruang sama dengan jumlah luas bidang sisi yang membentuknya. Kubus memiliki enam buah bidang sisi persegi. Luas sebuah persegi sama dengan panjang rusuk × rusuk.

Sehingga, rumus luas permukaan kubus yang memiliki panjang rusuk s adalah L kubus = 6 × s × s = 6 × s2.

Rumus Luas Permukaan Kubus
Sumber gambar: dokumen pribadi

Cara menghitung luas permukaan kubus

Soal:
Sebuah kubus memiliki rusuk 12 cm. Tentukan luas permukaannya!

Jawab: 
Dari soal diketahui panjang rusuk s = 12 cm.

Menghitung luas permukaan: 

Luas = 6 × s × s

Luas = 6 × 12 × 12 = 864 cm3

Jadi luas permukaan kubus tersebut adalah L kubus = 864 cm3.

Baca Juga: Rumus Volume dan Luas Permukaan Balok

Contoh Soal dan Pembahasan

Beberapa contoh soal dan penyelesaiannya ada di bawah. Selamat Berlatih!

Contoh 1 – Volume bangun di atas adalah ….

Contoh Soal Kubus Volume
Sumber gambar: dokumen pribadi

Volume bangun di atas adalah ….
A. 294 cm3
B. 343 cm3
C. 444 cm3
D. 468 cm3

Pembahasan:
Diketahui dua buah kubus yang memiliki panjang rusuk berbeda. Panjang rusuk pertama adalah s1 = 5 + 2 = 7 cm dan panjang rusuk kedua adalah s2 = 5 cm.

Menghitung volume kubus pertama (V1):

V1 = s13 =  s1 × s1 × s1  

V1 = 7 × 7 × 7 = 343 cm3

Menghitung volume kubus kedua (V2):

V1 = s23 = s2 × s2 × s2 

V1 = 5 × 5 × 5 = 125 cm3 

Jadi, volume bangun tersebut adalah V = V1 + V2 = 343 + 125 = 468 cm3.

Jawaban: D

Contoh 2 – Volume kubus tersebut adalah …

Panjang diagonal sisi kubus 52 cm. Volume kubus tersebut adalah ….
A. 100 cm2
B. 150 cm2
C. 200 cm2
D. 300 cm2

Baca Juga: Contoh Soal Volume Bangun Ruang Tingkat SD

Pembahasan:
Untuk mencari volume kubus membutuhkan informasi panjang rusuknya.

  • Dari soal diketahui,
    • Panjang diagonal sisi: s√2 = 5√2 cm
    • Panjang rusuk kubus: s = 5 cm

Menghitung volume:

V = s3 = s × s × s

V = 5 × 5 × 5 = 125 cm2

Jadi, volume kubus tersebut adalah V kubus = 150 cm2.

Jawaban: B

Contoh 3 – Biaya yang diperlukan untuk mengecat seluruh ruangan

Sebuah ruangan berbentuk kubus yang memiliki panjang sisi 11 m. Ruangan tersebut akan dicat dengan biaya pengecatan sebesar Rp20.000,00 per m2. Biaya yang diperlukan untuk mengecat seluruh ruangan tersebut adalah ….

A. Rp968.000,00

B. Rp3.680.000,00

C. Rp6.980.000,00

D. Rp9.680.000,00

Pembahasan:
BIasa yang diperlukan untuk mengecat seluruh ruangan sama dengan luas permunkaan yang akan dicat × biasa. Permukaan yang dicat adalah empat sisi tembok (sisi atas dan bawah tidak dicat).

Luas permukaan dinding yang akan dicat adalah:

L = 4 × (s × s) = 4×(11×11)

L = 4 × 121 = 484 m2

Biaya yang diperlukan untuk mengecat sama dengan luas kubus dikali biasa pengecetan per m2 (Rp20.000,00).

Jumlah biaya yang dibutuhkan

= luas permukaan yang akan dicat × biaya

= 484 × Rp20.000,00 = Rp9.680.000,00

Jadi, biaya yang diperlukan untuk mengecat seluruh ruangan tersebut adalah Rp9.680.000,00.

Jawaban: D

Sekian ulasan mengenai rumus volume kubus dan luas permukaannya. Terima kasih sudah mengunjungi idschool(dot)net, semoga bermanfaat!

Baca Juga: Karakteristik Bangun Ruang Sisi Datar

Leave a Comment

Your email address will not be published. Required fields are marked *