Relasi dan Fungsi: Pengertian, Perbedaan, dan Contoh Soal

By | December 15, 2017

Secara sederhana, relasi dapat diartikan sebagai hubungan. Hubungan yang dimaksud di sini adalah hubungan antara daerah asal (domain) dan daerah kawan (kodomain). Kedua jenis daerah akan dijelaskan kemudian. Sedangkan fungsi adalah relasi yang memasangkan setiap anggota himpunan daerah asal tepat satu ke himpunan daerah kawannya. Perbedaan antara relasi dan fungsi terletak pada cara memasangkan anggota himpunan ke daerah asalnya.

Pada relasi, tidak ada aturan khusus untuk memasangkan setiap anggota himpunan daerah asal ke daerah kawan. Aturan hanya terikat atas pernyataan relasi tersebut. Setiap anggota himpunan daerah asal boleh mempunyai pasangan lebih dari satu atau boleh juga tidak memiliki pasangan. Sedangkan pada fungsi, setiap anggota himpunan daerah asal dipasangkan dengan aturan khusus. Aturan tersebut mengharuskan setiap anggota himpunan daerah asal mempunyai pasangan dan hanya tepat satu dipasangkan dengan daerah kawannya.

Relasi dan Fungsi

Kesimpulannya, setiap relasi belum tentu fungsi, namun setiap fungsi pasti merupakan relasi. Penjelasan lebih lanjut mengenai relasi dan fungsi akan menjadi topik bahasan di bawah. Selanjutnya, mari simak pembahasan lebih lanjut mengenai relasi dan fungsi melalui ulasan berikut.

Daerah Asal, Kawan, dan Hasil

Dalam pembahasan relasi dan fungsi, himpunan yang terlibat digolongkan ke dalam tiga jenis daerah. Ketiga daerah tersebut adalah daerah asal (domain), daerah kawan (kodomain), dan daerah hasil (range). Secara umum, himpunan ketiga daerah tersebut dapat dilihat pada gambar di bawah.

Domain, Kodomain, dan Range

Definisi dari ketiga daerah tersebut diberikan seperti berikut.

  • Domain atau daerah asal adalah himpunan tidak kosong di mana anggota sebuah relasi didefinisikan.
  • Kodomain adalah atau daerah kawan merupakan himpunan tidak kosong dimana anggota domain memiliki pasangan sesuai relasi yang didefinisikan.
  • Range atau daerah hasil adalah semua anggota kodomain yang memiliki pasangan pada anggota domain.

Baca Juga: Cara Menentukan Domain, Kodomain, dan Range

Relasi

Seperti yang telah dijelaskan secara singkat di atas, relasi dapat diartikan sebagai hubungan. Misalkan sebuah relasi menyatakan hubungan perkalian. Hasil relasi tersebut dapat dinyatakan dalam himpunan pasangan terurut x dan y dan dapat juga digambar pada bidang kartesius.

Cara menyatakan hasil relasi perkalian antara himpunan A dan B dapat dilihat pada contoh permasalahan di bawah.

A = { 1, 2, 3 }
B = { 2, 3 }
A × B = {1, 4, 6, 3, 6, 9}

Sebuah relasi menyatakan pemetaan dengan fungsi f(x) merupakan perkalian A dan B. Anggota himpunan x adalah semua anggota A dan anggota himpunan y atau f(x) adalah hasil perkalian anggota A dan B.

x = {1, 2, 3}
y = {1, 4, 6, 3, 6, 9}

Gambar di bawah menyatakan relasi dalam bidang kartesius.

Cara menyatakan Relasi

Pembahasan selanjutnya adalah mengenai fungsi, simak dengan baik sammpai akhir ya!

Baca Juga: Sifat-sifat dan Contoh Soal Komposisi Fungsi

Fungsi atau Pemetaan

Fungsi atau yang sering disebut juga dengan pemetaan masih termasuk dalam relasi. Suatu relasi disebut fungsi jika semua anggota himpunan daerah asal dipasangkan tepat satu ke daerah kawannya.

Simbol fungsi yang memetakan himpunan A ke B adalah f: A → B

Contoh permasalahan pada fungsi, diketahui himpunan A dan B diberikan seperti di bawah.

A = { 0, 1, 2, 3, 4 }
B = { 0, 1, 2, …, 10}

Didefinisikan fungsi f: A → B dengan f(x) = x + 5.

Tentukan hasil pemetaan dari x ∈ A oleh fungsi f, Df, Kf, dan Rf!

Pembahasan:

Peta dari x ∈ A oleh fungsi f yaitu y = f(x) = x + 5:

  • f(0) = 0 + 5 = 5
  • f(1) = 1 + 5 = 6
  • f(2) = 2 + 5 = 7
  • f(3) = 3 + 5 = 8
  • f(4) = 4 + 5 = 9

Hasil dari perhitungan f(x) di atas merupakan daerah hasil/range. Daerah asal/domain adalah semua anggota himpunan A. Sedangkan daerah kawan/kodomain adalah semua anggota B.

  • Daerah asal (domain): Df = A = { 0, 1, 2, 3, 4 }
  • Daerah kawan (kodomain): Kf = B = { 0, 1, 2, …, 10}
  • Daerah hasil (range) = Rf = {5, 6, 7, 8, 9}

Baca Juga: Contoh Persaamaan Matematika yang Merupakan Fungsi

Sifat-sifat Fungsi

Fungsi dikelompokkan menjadi 3 (tiga) jenis yaitu fungsi Injektif, Surjektif, dan Bijektif. Pengelompokkan tersebut didasarkan pada sifatnya. Perbedaan ketiga jenis tersebut dapat disimak pada penjelasan di bawah.

1. Fungsi Injektif/Fungsi Satu-Satu (Fungsi Into)

Fungsi pertama yang akan dibahas adalah fungsi injektif atau sering disebut dengan fungsi into atau fungsi satu-satu. Fungsi f: A → B dikatakan fungsi injektif jika dan hanya jika anggota kodomain hanya dipasangkan satu kali dengan anggota domain. Pada fungsi injektif, anggota himpunan daerah kodomain boleh tidak memiliki pasangan, namun semua anggota kodomain yang terpasangkan hanya ada satu, tidak boleh ada yang lebih dari satu.

Perhatikan gambar di bawah untuk melihat lebih detail mengenai perbedaannya.

Fungsi Injektif (Satu-satu)

2. Fungsi Surjektif (Fungsi Onto)

Fungsi Surjektif atau onto memiliki ciri yaitu anggota kodomainnya boleh memiliki pasangan lebih dari satu, namun tidak boleh ada anggota kodomain yang tidak dipasangkan. Fungsi surjektif biasanya dipenuhi apabila jumlah anggota kodomain sama atau lebih sedikit dari anggota domain.

Perhatikan gambar di bawah untuk menambah pemahaman sobat idschool tentang sifat fungsi surjektif.

Fungsi Surjektif (Fungsi Onto)

3. Fungsi Bijektif (Korespondensi Satu-Satu)

Fungsi Bijektif merupakan gabungan dari fungsi injektif dan surjektif. Pada fungsi bijektif, semua anggota domain dan kodomain terpasangkan tepat satu. Kebalikan fungsi dari fungsi injektif dan surjektif belum pasti fungsi/pemetaan, namun kebalikan fungsi dari fungsi bijektif juga merupakan fungsi/pemetaan.

Pemetaan bijektif terlihat seperti gambar di bawah.

Fungsi Bijektif (Korespondensi Satu-satu)

Terlihat bahwa kebalikan dari fungsi f juga merupakan fungsi atau pemetaan, bukan?

Sekian pembahasan mengenai relasi dan fungsi, serta perbedaan dan contoh soal. Jika ada bagian yang kurang paham bisa tinggalkan pada kolom komentar di bawah. Terimakasih sudah mengunjungi idschool.net, semoga bermanfaat.

Baca Juga: Fungsi Invers dan Sifat Fungsi Invers pada Komposisi Fungsi

14 thoughts on “Relasi dan Fungsi: Pengertian, Perbedaan, dan Contoh Soal

      1. admin Post author

        Halo Andolr, coba sedikit menekankan bahasan di atas. Ringkasnya antara relasi dan fungsi/pemetaan terdapat pada aturan yang mengikatnya.

        Pada Relasi: tidak ada aturan khusus untuk memasangkan setiap anggota himpunan daerah asal ke daerah kawan.

        Pada fungsi/pemetaan: terdapat aturan khusu untuk memasangkan setiap anggota himpunan daerah asal dipasangkan dengan aturan khusus. Aturan tersebut mengharuskan setiap anggota himpunan daerah asal (domain) mempunyai pasangan dan hanya tepat satu dipasangkan dengan daerah kawannya (kodomian). Jadi yang perlu diperhatikan adalah pada fungsi/pemetaan yang harus diperhatikan adalah setiap anggota domain berpasangan dengan satu anggota kodomain.
        Selanjutnya, untuk fungsi/pemetaan terdiri dari tiga jenis yaitu surjektif, bijektif, dan korespodensi satu – satu. Ketiga jenis fungsi/pemetaan tersebut diberikan seperti bahasan lebih lanjut di atas.

        Semoga membantu

        Reply
        1. Yo

          jadi maksudnya fungsi memiliki aturan khusus seperti: himpunan domain harus memliki satu pasangan dari himpunan kodomain( tidak boleh lebih)?

          Reply
  1. Illa

    Maaf kak. Cuma tanya
    Yang bagian fungsi surjektif kalau dilihat dari gambarnya kayaknya lebih tepat kalimatnya ini bukan sih
    “Fungsi surjektif biasanya dipenuhi apabila anggota kodomain sama atau lebih sedikit dari anggota domain”
    Di blog ini kakak nyebutinnya lebih banyak. Maaf kalau salah ya. Terimakasih

    Reply
  2. Illa

    Alhamdulillah. Blog yang sangat bermanfaat. Benar-benar lengkap kalau bahas materi.

    Reply
    1. admin Post author

      Halo Daviid, ada yang bisa dibantu? Coba dipahami kembali pelan – pelan, semoga bisa segera paham. Terimakasih sudah mengunjungi idschool, salam sukses selalu.

      Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.